Energetics, forces, and quantized conductance in jellium-modeled metallic nanowires
نویسندگان
چکیده
Energetics and quantized conductance in jellium-modeled nanowires are investigated using the localdensity-functional-based shell correction method, extending our previous study of uniform-in-shape wires @C. Yannouleas and U. Landman, J. Phys. Chem. B 101, 5780 ~1997!# to wires containing a variable-shaped constricted region. The energetics of the wire ~sodium! as a function of the length of the volume-conserving, adiabatically shaped constriction, or equivalently its minimum width, leads to the formation of self-selecting magic wire configurations, i.e., a discrete configurational sequence of enhanced stability, originating from quantization of the electronic spectrum, namely, formation of transverse subbands due to the reduced lateral dimensions of the wire. These subbands are the analogs of shells in finite-size, zero-dimensional fermionic systems, such as metal clusters, atomic nuclei, and He clusters, where magic numbers are known to occur. These variations in the energy result in oscillations in the force required to elongate the wire and are directly correlated with the stepwise variations of the conductance of the nanowire in units of 2e/h . The oscillatory patterns in the energetics and forces, and the correlated stepwise variation in the conductance, are shown, numerically and through a semiclassical analysis, to be dominated by the quantized spectrum of the transverse states at the most narrow part of the constriction in the wire. @S0163-1829~98!01908-0#
منابع مشابه
On Mesoscopic Forces and Quantized Conductance in Model Metallic Nanowires
Energetics and conductance in jellium-modeled nanowires are investigated using the local-density-functionalbased shell correction method. In analogy with studies of other finite-size fermion systems, e.g., simple metal clusters or 3He clusters, we find that the energetics of the wire as a function of its radius (transverse reduced dimension) leads to formation of self-selecting magic wire confi...
متن کاملJellium Model of Metallic Nanocohesion
A unified treatment of the cohesive and conducting properties of metallic nanostructures in terms of the electronic scattering matrix is developed. A simple picture of metallic nanocohesion in which conductance channels act as delocalized chemical bonds is derived in the jellium approximation. Universal force oscillations of order ́FylF are predicted when a metallic quantum wire is stretched to ...
متن کاملMolecular detection based on conductance quantization of nanowires
We have studied molecular adsorption onto stable metallic nanowires fabricated with an electrochemical method. Upon the adsorption, the quantized conductance decreases, typically, to a fractional value, which may be attributed to the scattering of the conduction electrons by the adsorbates. The further conductance change occurs when the nanowire is exposed to another molecule that has stronger ...
متن کاملMolecular adsorption onto metallic quantum wires.
We have studied the adsorption of mercaptopropionic acid, 2,2'-bipyridine, and dopamine onto electrochemically fabricated Cu nanowires. The nanowires are atomically thin with conductance quantized near integer multiples of 2e(2)/h. Upon molecular adsorption, the quantized conductance decreases to a fractional value, due to the scattering of the conduction electrons by the adsorbates. The decrea...
متن کاملPlasmonic Thermal Conductance of Stack of Metallic Nanorings
In this paper, we study the plasmonic thermal conductance of ordered stacks of metallic nanorings in a host material. Using second quantized formalism of the Random Phase Approximation, we first determine the dispersion relations of surface plasmon waves on the stacks of nanorings. Then, using Landauer-Buttiker formalism, we determine the coefficient of plasmonic thermal conductance and heat cu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998